Sample Generated Datasets

Explore realistic synthetic data generated using advanced AI techniques. Each dataset demonstrates different field types, industry contexts, and data patterns while maintaining uniqueness and avoiding duplicates.

OpenAI-Powered Generation
Intelligent Duplicate Detection
CLI Tool

E-Commerce Customer Data

E-Commerce

Realistic customer profiles for online retail analysis

python main.py --fields "customer_id:string:uuid,name:string,email:string,age:integer:18:70,total_spent:float:25:2500,category_preference:categorical:electronics|clothing|books|home"...

Healthcare Patient Records

Healthcare

Anonymized patient data for medical research and training

python main.py --fields "patient_id:string:uuid,age:integer:18:85,diagnosis:categorical:flu|covid|diabetes|hypertension|allergies,visit_cost:float:50:800,insurance_type:categorical:private|medicare|medicaid"...

Financial Transaction Data

Finance

Synthetic transaction records for financial modeling

python main.py --fields "transaction_id:string:uuid,account_holder:string,amount:float:10:5000,transaction_type:categorical:deposit|withdrawal|transfer|payment,risk_score:float:0:1"...

About This Tool

This Python CLI application generates synthetic datasets using OpenAI's advanced language models. It features intelligent duplicate detection using fuzzy matching algorithms, configurable batch processing for optimal performance, and industry-specific context generation for realistic data patterns. The tool supports multiple output formats (JSON, CSV, Parquet) and can generate up to 50,000 records with sophisticated uniqueness controls and memory management.